The thinning of the blood which happens
when one is bled may also be beneficial.
------
For blood stem cells, the force is strong
Blood flow, nitric oxide boost production of stem cells
By Tina Hesman
Saey Web edition : Wednesday, May 13th, 2009
Blood stem
cells grow with the flow, two new studies show.
The studies, led by independent groups at Children’s Hospital Boston,
report that an embryo’s heartbeat and blood circulation stimulate the
growth of blood stem cells.
The discovery could be a boon to researchers seeking to make blood
stem cells for people with blood cancers, immune system disorders and
other diseases that require bone marrow transplants. In children and
adults, blood stem cells reside in the bone marrow. Only about a third
of patients who require bone marrow transplants have matching donors.
“Basically we cannot offer optimal therapy to two-thirds of patients,”
says Leonard Zon, director of the Stem Cell Program at Children’s
Hospital Boston, and a coauthor of one of the new studies, which
appears online May 13 and in the May 15 Cell.
Scientists can make red and white blood cells easily in the
laboratory, but bone marrow patients need blood stem cells to
constantly replenish their blood supply. Producing these cells, also
called hematopoietic stem cells, is much more difficult, Zon says.
Now, his group suggests that a little force can boost blood stem cell
production in zebrafish embryos. Reporting online May 13 in Nature, a
group led by George Daley, director of the Pediatric Stem Cell
Transplantation Program at Children’s Hospital Boston, demonstrates
that blood flow also triggers hematopoietic stem cell production in
mouse embryos. Both groups found nitric oxide plays an important role.
Daley’s group directly tested the ability of blood flow to turn cells
into hematopoietic stem cells. The team placed mouse embryonic stem
cells in a centrifuge-like device that mimics sheer stress — the
frictional force blood creates when it flows over cells — in a mouse’s
aorta. In early embryos, blood stem cells first form on the floor of
the aorta. Later in development, they migrate to the bone marrow.
Embryonic stem cells exposed to the same magnitude of sheer stress as
found in the mouse aorta produced hematopoietic stem cells. Cells that
were exposed to a different magnitude of sheer stress, such as that in
the human aorta, did not.
A nitric oxide–blocking drug reduced the number of blood stem cells
induced by the sheer stress. Nitric oxide is a chemical produced
naturally in the body and is known to be important in regulating blood
vessel growth and elasticity.
When the researchers gave the nitric oxide–blocker to pregnant mice,
their embryos also had problems making blood stem cells.
Zon’s team used zebrafish embryos, which are transparent, to watch the
stem cells develop. He and his colleagues found that chemicals that
increase blood flow in the tails of zebrafish embryos also boost
activity of RUNX1, a master regulator of blood stem cells. Mutant
embryos that don’t have a heartbeat because of a defect in a heart
muscle protein don’t make hematopoietic stem cells in their tails.
When the researchers gave a nitric oxide compound to the mutant
embryos, however, the embryos produced more blood stem cells. The
nitric oxide–blocker also inhibited blood stem cell production, the
researchers found. Those findings suggest that blood flow may increase
nitric oxide levels, which then boost stem cell production, Zon says.
Intuitively, scientists might expect that mechanical forces play a
role in shaping development, but few biologists have studied this due
to experimental difficulties, says Ihor Lemischka, a stem cell
biologist at Mount Sinai School of Medicine in New York City.
“I think we’ll be seeing more of these types of studies,” Lemischka
says.
It’s still not clear how the cells sense sheer stress, and researchers
are trying to unravel the chain of events between mechanical force and
stem cell production in order to manipulate the process to make blood
stem cells for transplant.